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Abstract

Medical datasets can suffer from significant class imbalance. In 3D
patch-based lung nodule detection, for example, only 1% of all sampled
volumes contain a nodule. To alleviate class imbalance, we propose using
a 3D residual Wasserstein GAN with gradient penalty and an auxiliary
classifier loss to synthesize fake samples that contain lung nodules to
augment the imbalanced dataset, and then train a classifier with the
generatively augmented dataset. We demonstrate that the GAN is able
to generate novel samples distinct from the training set images, and that
the generatively augmented classifier has a slightly lower sensitivity but
significantly reduced false positive rate, improved F1 score, and higher
precision compared to the baseline model.

1 Introduction

1.1 Motivation
This thesis is motivated by the class-imbalance problem in computer-assisted
lung nodule detection in pulmonary computed tomography (CT) scans. Lung
nodules are small, round growths in the lung. Most lung nodules are benign,
but some are cancerous; effective detection of lung nodules can help with early
detection of lung cancer. Recently, patch-based 3D convolutional architectures
have proven to yield satisfactory results in assisting radiologists in lung nodule
detection: for each case, the lung volume is extracted and cropped into 3D
patches; then, a classifier neural network predicts whether there exists a nodule
within each patch, alleviating the radiologist’s workload and assisting with the
discovery of lung nodules [1].

Like many medical datasets, however, the problem of class imbalance is
especially significant in lung nodule detection. For example, in this thesis, we use
the Lung Nodule Analysis 2016 (LUNA16) challenge dataset. After preprocessing,
1.4% of all patches are positive (with nodule), and 98.6% are negative (without
nodule). Conventional data augmentation, such as random flips and rotations,
is widely used to improve model performance. Recently, generative adversarial
networks (GANs) have been shown to generate realistic images resembling real
ones.

1.2 Thesis
Therefore, following the line of reasoning above, the thesis is that, for class-
imbalance problems, conventional data augmentation only utilizes the minority-
class information. Instead, we can generatively augment the dataset such that
the generative model takes advantage of information across all classes.

In this paper, we demonstrate on the Lung Nodule Analysis 2016 (LUNA16)
challenge dataset that an auxiliary classifier generative adversarial network
(ACGAN) with a 3D residual structure, Wasserstein loss and a gradient penalty
(reviewed in the section below) can synthesize novel samples to complement
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the minority class and improve the classifier performance for the lung nodule
detection problem, and point out possible further improvements based on the
thesis experiments.

1.3 Literature Review
1.3.1 Neural Network Basics

Universal Approximation Theorem A neural network can be thought of
as a sophisticated parametrized function that can approximate any mapping
from a set of inputs to a set of outputs. Let us begin with a simple single-
layer neural network. The universal approximation theorem [2] states that, a
single-layer fully-connected neural network with a nonlinear activation function
ϕ, represented as

F (x) =

N∑
i=1

viϕ(wTi x+ bi); vi, wi, bi parameters

can approximate any function f : Rn → R.

Supervised Training of Neural Networks Although a good theoretical
foundation, [2] does not tell us how to obtain a working neural network. In
practice, the training of a neural network is formulated as an optimization
problem, typically to minimize a measure of error, or “wrongness”, called the
loss function. In machine learning, a supervised problem is one in which we
have both the input information X (features) and the desired correct output y
(ground truth). (If we do not have the ground truths, it is unsupervised.)
Then, we formulate a loss function L that measures how wrong the model output
is, given the ground truth y and the model prediction ŷ = Fθ(X), such that
L(y, ŷ)) is minimized when y = ŷ. Given a single-layer neural network denoted
Fθ with parameters θ, finding the neural network parameters is solving the
optimization

θ := argmin
θ

L(y, ŷ)) = argmin
θ

L(y, Fθ(X))

given the input data. Suppose we have the single-layer network as formulated
above; we can use gradient descent to optimize on vi, wi, bi and minimize the loss.
Each step, we numerically compute ∂L/∂v, ∂L/∂w, ∂L/∂b and update v,w, b
accordingly.

Multilayer Perceptron Practical neural networks consist of a sequence of
multiple layers. Therefore, to efficiently optimize on the parameters of multiple
layers, there is one more development from the single-layer network. In a deep
neural network consisting of many layers, each layer can be thought of as the
single-layer function above. With this representation, let Fk be the k-th layer of
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a N-layer neural network. Given an input X0, our model output becomes

ŷ := FN (FN−1(FN−2(F...(F2(F1(X0))))))

where each Fk is formulated as

F (X) = ϕ(wTX + b)

Each layer’s input is the previous layer’s output, and the first layer’s input is
the raw featuresX0. This is called the multilayer perceptron [2]. For convenience
below, here we denote the output of each layer Fk as Xk.

Optimization by Backpropagation Optimizing the parameters of multiple
layers requires the concept of backpropagation, first proposed by [3]. It answers
this question: given the desired change (gradient) for the entire model’s output,
what is the gradient for each of the layer parameters, for all of the layers? In its
essence, the idea of backpropagation is that to eventually change the output of a
layerXk = Fk(Xk−1) = ϕ(wT

kXk−1 +bk), there are three things we can change:
Xk−1,wk, and bk. Of these three, Xk−1 is the input of this layer, which is also
the output of the previous layer Fk−1; wk, bk are the parameters of the layer.
To compute the gradient for each of them is a straightforward application of
chain rule:

∂Fk(Xk−1)

∂wk
= ϕ′(wT

kXk−1 + bk)XT
k−1

∂Fk(Xk−1)

∂bk
= ϕ′(wT

kXk−1 + bk)1 = ϕ′(wT
kXk−1 + bk)

∂Fk(Xk−1)

∂Xk−1
= ϕ′(wT

kXk−1 + bk)wT
k

And from there, since ∂Fk(Xk−1) is given, we can extract ∂w, ∂b, ∂Xk−1 to get
the gradients.

The brilliance of backpropagation is in realizing that 1) we can compute
the gradients for the layer parameters ∂wk, ∂bk and the layer input ∂Xk−1

as long as we know the gradient for the layer output ∂Fk(Xk−1); and 2) this
layer’s input Xk−1 is the previous layer’s output, and therefore we now have the
gradient for the previous layer’s output, enabling us to apply backpropagation
recursively, layer by layer.

Vanishing Gradients and Exploding Gradients Continuing the back-
propagation explorations above, a common problem with backpropagation is
vanishing gradients. In backpropagation, each previous layer’s gradients depend
on this layer’s gradients. We can see that ∂Xk−1 for k = N,N − 1, N − 2, . . . , 2
is divided many times by ϕ′(wT

kXk−1 + bk)wT
k . If this denominator term is

consistently large in absolute value, we get vanishing gradients as we go deeper.
If it is consistently small in absolute value, we get exploding gradients as we
go deeper. Batch normalization can alleviate this issue and improve training
stability. It is widely used and will not be discussed at length in this thesis, but
the curious reader can refer to [4].
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Generalization It is apparent that the line of reasoning above generalizes to
any differentiable operation, not only the linear transformation wX + b and
the differentiable activation function ϕ in the example above. As long as we are
going through a sequence of differentiable operations, we can recover gradients
for all parameters involved. For example, convolutions are widely used in neural
networks to process images.

1.3.2 Residual Network (ResNet)

Residual networks are neural networks where each layer is modeled as Fk(Xk−1)+
Xk−1 instead of only Fk(Xk−1). Instead of mapping an input to an entirely
new output, each layer only adds a residual adjustment to the original input.

Figure 1: The residual block [5].

This “+Xk−1” operation is called a “skip connection” in the original paper [5].
We can see that given this residual form, the partial derivative ∂(Fk(Xk−1) +
Xk−1)/∂Xk−1 = F ′k(Xk−1) + 1. Indeed, this helps with the vanishing gradient
problem discussed in 1.3.1: even if F ′k(Xk−1) vanishes, we still have the identity
passing along the gradient to deeper layers. This helps the flow of gradients,
accelerates training convergence, and achieves significantly better performance
[5].

1.3.3 Generative Adversarial Network (GAN)

The concept of Generative Adversarial Network (GAN) is first proposed in
Goodfellow’s seminal paper [6]. In a conventional neural network, the formulated
optimization objective is to minimize some loss function measuring a distance
between the prediction and the ground truth. This works well for supervised
problems. However, with a conventional neural network, it is not immediately
apparent how to approximate an arbitrary training data distribution and generate
new samples that resemble the training data samples in a completely unsupervised
manner. [6] solves this by introducing two networks trying to maximize the loss
of one another: a generator and a discriminator.

The generator G maps a random latent noise z ∼ N (0, 1) to a sample G(z).
The discriminator classifies whether a sample is real or fake. During training,
the discriminator sees both real and fake samples.
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Discriminator Loss The discriminator outputs 0 for fake, and 1 for real
samples. Formally, the loss function for the discriminator is in effect a negated
binary cross-entropy loss:

max
θd

[
Ex∼pdata logDθd(x) + Ez∼p(z) log

(
1−Dθd

(
Gθg (z)

))]
Generator Loss The loss function for the generator is to maximize the likeli-
hood of the discriminator classifying generated samples as real ones:

max
θg

Ez∼p(z) log
(
Dθd

(
Gθg (z)

))
[6] further proves that this is equivalent to minimizing the Jenson-Shannon

divergence (JS divergence) between the real and fake data distributions. However,
training is often unstable with higher-dimensional data, as we will discuss below
in 1.3.5.

1.3.4 Auxiliary Classifier GAN (ACGAN)

The original GAN discriminator only outputs a binary classification (real or
fake). To generate conditional samples based on labeled classes (e.g. only dogs,
only cats, etc.), [7] makes two additions to the original GAN.

The generator now takes in both the latent noise z, and one-hot encoded
class labels.

The discriminator now outputs both a real-or-fake binary classification, and an
auxiliary classification predicting which class the sample belongs to. Accordingly,
we add a cross-entropy loss to the original discriminator loss function, in which
the ground truths are either the labels fed to the generator for the fake data, or
the real labels sampled from the training dataset.

We also add a cross-entropy loss to the original generator loss, in which the
ground truths are the discriminator’s class predictions.

This allows us to use supervised class labels to train an otherwise unsupervised
generative model, and generate conditional samples [7].

1.3.5 Wasserstein GAN with Gradient Penalty (WGAN-GP)

Problems with JS divergence The original GAN formulation minimized the
JS divergence between the target distribution Preal and the generated distribution
Pg, proven in section 4.1 in [6]. The JS divergence, however, does not provide
a gradient when Preal and the fake distribution Pg has no overlapping support.
Recall that the JS divergence is a symmetric arrangement of Kullback–Leibler
divergence (KL divergence), here denoted KL:

JS(Preal || Pg) =
1

2
KL(Preal || M) +

1

2
KL(Pg || M)

Where M is the average mixture between the two distributions in question:

M =
1

2
(Preal + Pg)
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And the KL divergence is defined as

KL(P || Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
Note that when there is no support overlap between the two distributions

(i.e. ∀x ∈ X , Preal(x)Pg(x) = 0), the KL divergence will be constant:

KL(Preal || M) =
∑
x∈X

Preal(x) log

(
Preal(x)

M(x)

)

=
∑
x∈X

Preal(x) log

(
Preal(x)

1
2Preal(x) + 1

2Pg(x)

)
= log 2

Same reasoning gives us KL(Pg || M) = log 2. Therefore, in the case of no
support overlap, the JS divergence is constant:

JS(Preal || Pg) = log 2

Of course, this constant term gives us a 0 gradient. One can see this quickly
becomes a problem in higher-dimensional generative problems such as synthesiz-
ing high-resolution human faces: while there are countless possible pixel values,
there are only a few types of probable human faces, giving us an extremely
sparse distribution over the space. In this case, the support overlap vanishes and
training does not converge because we have a zero gradient.

Wasserstein distance [8] proposes that, instead of JS-divergence, we should
use the Wasserstein distance defined on the 1st moment as the loss function,
denoted W below. The 1st moment of a distribution is simply its mean.

Intuitively, the Wasserstein distance is also called the earth-mover distance: if
we have two probability distributions µ, ν (piles of dirt), for all point masses (dirt
particles) in µ, the minimal total distance required to move the a certain-shaped
µ into a new shape ν is W (µ, ν).

Formally, define a transport plan γ, which is a joint distribution over µ, ν. For
each pair of coordinates x, y ∈ γ, x denotes the source, y denotes the destination,
and γ(x, y) denotes the planned amount of mass movement from x to y. Define
all valid transport plans as Π(µ, ν). l2 norm is used as the distance metric. Then,
the (1st-moment) Wasserstein distance is defined as

W (µ, ν) = inf
γ∈Π(µ,ν)

E(x,y)∼γ(‖x− y‖2)

Which has a gradient everywhere even when there is no support overlap.
This leads to stable training even on high-dimensional data.

W is hard to calculate, but [8] notes that the dual representation of W can
be approximated:

W (µ, ν) = sup
‖f‖L≤1

Ex∼Pµ [f(x)]− Ex∼Pν [f(x)]
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Where ‖f‖L ≤ 1 denotes 1-Lipschitzness, meaning that the ‖∇f(x)‖ ≤ 1 every-
where.

Intuitively, the original GAN discriminator minimized binary cross-entropy,
which was a classification problem requiring a sigmoid nonlinearity squishing
R → (0, 1) and diminishing its gradient by doing so. Now the discriminator
(called critic in [8]) scores each sample and maximizes the score difference
between real and fake samples, and the generator tries to maximize the score of
its generated samples, yielding a much smoother gradient even when there are
no support overlaps.

To enforce 1-Lipschitzness, [9] adds a regularization term to the critic loss
such that the critic gives a well-behaved gradient with this soft constraint:

gradient penalty = λ(‖∇x̂f(x̂)‖2 − 1)2

Where λ is a scaling hyperparameter, x̂ is a random linear combination of real
and fake samples (x̂ = εxreal + (1− ε)xfake, ε ∼ U [0, 1]). The regularization term
penalizes any gradient away from norm 1.

1.3.6 Deep Convolutional GAN (DCGAN) Data Augmentation for
Chest X-ray

[10] deals with a heavily class-imbalanced chest X-ray dataset. In their dataset,
there were more than 12,000 cardiomegaly, effusion and normal cases, but only
3,018 edema cases and 2,013 pneumothorax cases. DCGAN data augmentation
was applied to the original dataset to synthesize additional images to complement
the original dataset and achieve class balance. They demonstrated an increase
in classification accuracy from 70.9% to 92.1%.

1.3.7 GAN Data Augmentation for Liver Lesion Segmentation

[11] applied DCGAN to synthesize 3 classes of liver lesion samples: cysts,
metastases, and hemangiomas. Their dataset consists of only 182 cases. In
conclusion, they reported a conventionally augmented classifier yielding 78.6%
sensitivity and 88.6% specificity, and a GAN augmented classifier yielding 85.7%
sensitivity and 92.4% specificity.

2 Dataset
In this thesis, we work with the Lung Nodule Analysis 2016 (LUNA16) challenge
dataset [12], which is a processed subset of the Lung Image Database Consortium
and Image Database Resource Initiative (LIDC/IDRI) dataset [13]. The base
dataset LIDC/IDRI contains 7371 lesions that are marked by at least 1 of the 4
reviewing radiologists; each annotation includes the position and the estimated
nodule size. In short, the LUNA16 dataset is a subset of the LIDC/IDRI dataset
including only CT scans with a slice thickness less than 2.5 mm, and only nodules
that are at least 3 mm in size and marked by at least 3 of the 4 radiologists.

7



2.1 Preprocessing
2.1.1 Aspect Ratio

The LUNA16 dataset consists of 888 CT scans in DICOM format [14]. For each
patient, the corresponding DICOM files are loaded to reconstruct the original
CT scan. Because we intend to use a convolutional classifier to detect nodules,
it is common practice to standardize the aspect ratios across three axes. Since
DICOM files contain scanner metadata, we can do this by interpolating all scans
according to the resolutions recorded in the metadata such that the interpolated
axis resolutions are all 1×1×1 (mm/pixel). This ensures that all nodules appear
similarly shaped for the classifier.

2.1.2 Hounsfield Unit Normalization

CT scanners are calibrated to return voxel intensity values on the Hounsfield
scale. The Hounsfield scale is a standard for radiodensity measurements: at
standard pressure and temperature, the radiodensity of air is defined as −1000
Hounsfield Units (HU), and water defined as 0 HU. Cancellous bones typically
measure 350 to 400 HU [15], and lung tissues typically measure −800 to −700
HU [16]. Most information falls within the range of [−1000, 400]. Therefore, raw
volumes are clipped at [−1000, 400] and linearly transformed to [−1, 1] for the
models.

2.1.3 Lung Segmentation

The lung is segmented with a traditional computer vision approach. First, the
image is binarized such that all voxels with less than −500 HU is selected. This
effectively selects all voxels that contain air. Then, we use OpenCV [17] to
perform a morphological closing operation to remove the holes within the mask
and to include the lung tissues. The largest volume is selected and considered as
the lung [18].

2.1.4 Positive and Negative Cube Samples

Positive sample cubes are cropped from the LUNA16 dataset annotations. Neg-
ative cubes are generated by randomly sampling parts of lung volumes that do
not contain the annotated nodules. All cubes are sized 48× 48× 48 voxels.

2.1.5 Train / Validation / Test Split

In our experiments, 70% of the dataset was used for training, 10% for validation,
and 20% is kept away as the test set. Both the GANs and the lung nodule
detection classifiers are only trained on the training set to avoid information
leakage.

In total, below are the resulting numbers of samples after all preprocessing
steps.
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Positive Negative
Training (70%) 5712 406791

Validation (10%) 816 58113
Test (20%) 1632 116226

Table 1: Dataset sample counts.

2.1.6 Conventional Data Augmentation

Random flips on the x, y, z axes are done to augment the positive samples. The
negative samples are used as is.

2.1.7 Processed Samples

After preprocessing, typical positive and negative samples are 48× 48× 48 voxels
with a 1 mm / voxel resolution, normalized to [−1, 1]. Each sample is shown
here slice by slice in reading order from superior (to the head) to inferior (to the
feet).

Figure 2: Positive samples from LUNA16

Figure 3: Negative samples from LUNA16
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3 Model Architecture

3.1 Auxiliary Classifier Wasserstein GAN with Gradient
Penalty

The GAN architecture combines all sections in the literature review. It is a
Wasserstein GAN with gradient penalty (1.3.5) and an auxiliary classification
loss (1.3.4). It has a 3D residual architecture (1.3.2).

Figure 4: Auxiliary classifier Wasserstein GAN architecture.

The generator transforms a conditional random Gaussian noise to a 48×48×48
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grayscale volume. To generate such a conditional random Gaussian noise, first
we randomly sample a Gaussian noise vector z ∼ N (0, 1), and then overwrite
the first N numbers with the one-hot encoding of desired class labels, where N
is the number of classes. Specifically, in our case N = 2 and we encode [0,1]
for positives and [1,0] for negatives. The resulting vector is fed through the
generator to synthesize a fake sample cube.

The critic processes an input image (both real and fake samples) and gives
two outputs: the critic score, and the auxiliary classification. The critic score
is an estimate of the sample “realness”. Formally, it is used in the dual form of
the 1-Wasserstein distance between the real and synthesized data distributions,
as described in section 1.3.5 above. The auxiliary classification is the critic
prediction for the sample class (positive or negative), as described in section 1.3.4
above. This label is later used for the auxiliary classification loss to incentivize
both the generator and the critic to not only synthesize and distinguish realistic
samples, but also correctly approximate conditional distributions.

Layer normalization [19] and leaky ReLU activation [20] are used after each
convolution layer except output layers.

3.1.1 Residual Block

Figure 5: Upsamling / downsampling residual block.

As described in section 1.3.2 above, the residual block here is a 3D convolutional
block containing a skip connection. In the generator, the residual blocks performs
upsampling by nearest neighbor interpolation. In the discriminator, the residual
blocks performs downsampling with 3D average pooling.

3.2 Lung Nodule Detection Classifier
The lung nodule detection classifier is a small model that quickly downsamples
the input image with repeated max pooling and strided convolution operations.
Both the max pooling and the strided convolution downsamples each axis in
half. This model is designed to be quick to train and evaluate as the thesis is
limited in time and compute.
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Figure 6: Lung nodule detection classifier architecture.

3.3 Loss Definitions
3.3.1 Critic Loss

The critic loss consists of the vanilla Wasserstein GAN loss, the gradient penalty,
and the auxiliary classification cross-entropy loss.

Formally, suppose (Xreal, yreal) ∼ Preal are real images and labels sampled
from the real distribution. Randomly sample yfake, the desired class labels for
the fake samples. Sample z ∼ N (0, 1), the corresponding conditional Gaussian
noise. Let the critic score be f(X), and the critic auxiliary classification be ŷ.

For each mini-batch, we sample both real and synthesized images and con-
catenate them into one batch. Let X = Xreal

_Xfake, y = yreal
_yfake, where _

denotes concatenation.
For the gradient penalty, as described by [9], let ε ∼ U [0, 1] be a uniform

random scalar; let the generator be G, and generated samples be Xfake = G(z).
Let X̂ = εXreal + (1 − ε)Xfake, a linear interpolation between real and

generated samples.
Now define two hyperparameters: let λ be the gradient penalty scale, and α

be the auxiliary classification loss scale.
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Then, the critic loss can be written as

Lf = f(Xfake)− f(Xreal) + λ(‖∇X̂f(X̂)‖2 − 1)2 +

(
−α

N∑
i=1

yi log(ŷi)

)

Where

• f(Xfake)− f(Xreal) is the dual form 1-Wasserstein distance;

• λ(‖∇X̂f(X̂)‖2 − 1)2 the gradient penalty;

• −α
∑N
i=1 yi log(ŷi) the cross-entropy loss for the critic auxiliary classifica-

tion.

Intuitively, this incentivizes the critic to maximize the distance between the
sample scores between the real and fake samples, keep the gradient norm close
to 1, and correctly classify the samples. [9]

3.3.2 Generator Loss

To calculate the generator loss, we generate samples with the generator, and score
and classify them with the critic. The generator loss function consists of two
terms: the critic score for the fake samples, and the critic auxiliary classification
cross-entropy loss, taking the desired label input as ground truth.

Formally, sample some random desired class labels y, sample a corresponding
conditional Gaussian noise z ∼ N (0, 1), and Xfake = G(z) same as above. Predict
critic score f(Xfake) and critic auxiliary classification ŷ.

Then, the generator loss can be written as

LG = −f(Xfake) +

(
−α

N∑
i=1

yi log(ŷi)

)

Where

• −f(Xfake) is the critic score for the samples;

• −α
∑N
i=1 yi log(ŷi) is the auxiliary classification loss for the samples.

Intuitively, this incentivizes the generator to improve (minimize) the sample
realness score and correctly generate samples conditional on the class labels.

3.3.3 Lung Nodule Detection Classifier Loss

The lung nodule detection classifier predicts a softmax vector for our two classes
(positive / negative) with a cross-entropy loss. [9]
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4 Methodology

4.1 Wasserstein GAN
4.1.1 Training

The Wasserstein GAN is trained with mini-batch stochastic gradient descent
with the Adam optimizer [21] with β1 = 0, β2 = 0.9 as suggested by [8]. Batch
size 64, learning rate 10−4. The gradient penalty scale is λ = 10 as suggested
by [9]. The auxiliary classifier scale is α = 1 at the beginning of the training;
at the end of the training when both the generator and the discriminator have
stabilized, we tune it to α = 10 to penalize wrong classifications.

For each epoch, we train the critic for 5 iterations and the generator for 1
iteration as suggested by [8] to ensure an accurate estimation of the Wasserstein
distance by the critic network.

Figure 7: WGAN loss curves.

TheWasserstein GAN training is defined as an unsupervised or semi-supervised
problem: for the generator, although it uses the class labels, it tries to fit the con-
ditional distributions without supervised ground truth images that correspond to
each Gaussian noise z. For the critic, the training is supervised as it has access to
ground truths (real/fake and positive/negative). Here we show that the training
converges stably with relevant loss plots and generated samples seeded with a
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z fixed throughout the training to visualize the progression of sample quality.
For the loss plots, the smoothed loss and smoothed 95% confidence intervals for
loss values are shown for the critic auxiliary classification cross-entropy, and the
Wasserstein distance estimates. In total, the Wasserstein GAN was trained for
20,000 epochs. See loss curves above.

4.2 Conventional Augmentation
Conventional augmentation consists of only random flips along the x, y, z axes.
Because the intensity of CT scan voxels is calibrated to a standard Hounsfield
scale, we refrained from adding random noises to preserve information.

4.3 Generative Augmentation
We generate fake positive samples to augment the scarce real positive samples.
First, we pass random Gaussian noises conditioned on the positive class into
the generator and generate positive samples. Then, we use the critic to score
and classify each sample, and select the best samples. For each sample, if its
critic loss is below some threshold (i.e. it is considered real enough) and the
auxiliary classification is confident above a threshold that the generated samples
are indeed positives, we will include it in the generated dataset.

4.4 Lung Nodule Detection Classifier
4.4.1 Training

Figure 8: Classifier training and validation loss.

The classifier is trained on each of the two datasets: one run on only the
conventionally augmented original dataset, and one run on the mixed dataset of
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both real and synthesized data. Mini-batch stochastic gradient descent with the
Adam optimizer (β1 = 0.9, β2 = 0.999). Batch size 64, initial learning rate 10−3.
At epoch 30, the learning rate is decayed to 10−4. Each batch is class-balanced
to have 32 positive and 32 negative samples. 60 epochs in total.

See training and validation cross-entropy loss curves above.

5 Results

5.1 GAN Generated Samples
The GAN was able to generate a variety of visually realistic samples that represent
pulmonary nodules. To demonstrate that the GAN was in fact generating novel
samples instead of simply memorizing the training data, here we show a few
generated samples with its l2-norm nearest neighbor side by side. We can observe
the nodule at the center of the volume, and that the samples are indeed visually
distinct from the training set. See Appendix A for more images.

Figure 9: Generated (left) vs. nearest real training sample (right).

Figure 10: Generated (left) vs. nearest real training sample (right).
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5.2 Classification Metrics
The classifier was trained on:

• Only conventionally augmented real data

• Mix of real and GAN synthesized data

• Only GAN synthesized data (no real data)

For each run, the classifier with the best validation performance was kept and
evaluated on the test set.

Aside from that, we also compare these specifically trained classifier with the
auxiliary classifier in the critic. The critic auxiliary classifiers did not go through
additional training; it was directly evaluated on the test set for classification
performance.

Below we report the F1 score, sensitivity, specificity, precision, and the
confusion matrix on the test set.

5.2.1 Conventional Augmentation Baseline

Ground Truth
Positive Negative

Prediction Positive 1583 2776
Negative 50 113451

Sensitivity: 0.969
Specificity: 0.976
Precision: 0.363

F1: 0.528

Table 2: Classification metrics, conventional augmentation baseline.

5.2.2 Generative Augmentation Mixed with Real Data

Ground Truth
Positive Negative

Prediction Positive 1377 750
Negative 256 115477

Sensitivity: 0.843
Specificity: 0.994
Precision: 0.647

F1: 0.732

Table 3: Classification metrics, generative augmentation mixed with reals.
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5.2.3 Completely Fake Data

Ground Truth
Positive Negative

Prediction Positive 919 8539
Negative 714 107688

Sensitivity: 0.563
Specificity: 0.927
Precision: 0.097

F1: 0.166

Table 4: Classification metrics, only generated fake samples.

5.2.4 Critic Auxiliary Classifier Performance

Ground Truth
Positive Negative

Prediction Positive 1215 815
Negative 418 115412

Sensitivity: 0.744
Specificity: 0.993
Precision: 0.598

F1: 0.663

Table 5: Classification metrics, critic auxiliary classifier (no fine-tuning).

5.3 Conclusions
Compared to the conventional augmentation baseline, generative adversarial
data augmentation was able to significantly decrease false positives in the lung
nodule classification task, resulting in a significant increase in F1 score, precision
and specificity; it was, however, somewhat worse in sensitivity compared to the
conventional augmentation baseline.

We also make three observations: 1) the classifier trained on completely fake
data converged rapidly on the training loss but performed badly on the validation
and the test sets; 2) the generatively augmented classifier behaves similarly to
the critic auxiliary classifier, failing to detect more subtle nodules; and 3) the
Wasserstein distance flattened out around 70 (see 4.1.1) and the Wasserstein
GAN failed to drive the Wasserstein distance down to 0 during training.

These observations signify that the model capacity of both the generator
and the critic in our Wasserstein GAN are not sufficiently large to generate
samples that are indistinguishable from the real data. Given the limited time and
computational resources, we believe that this thesis experiment is a promising
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proof-of-concept that conditional generative adversarial augmentation can be
used to combat class imbalance in lung nodule detection or in other heavily
imbalanced datasets, but larger experiments need to be conducted to yield
definitive conclusions.

6 Further Research
Based on the experiment results above, we suggest two further areas of research.

One is training a larger Wasserstein GAN architecture and a larger lung
nodule detection classifier. As mentioned above in 5.3, we were able to conclude
that our model capacity was insufficient for the task of sample generation.
Experiments with a larger architecture could yield better results.

Two is adding finer features to condition the GAN. This thesis only conditions
the GAN to distinguish between positive and negative classes. An extension
to this would be to extract the nodule size (annotated nodule diameter), nod-
ule transparency (solid, part-solid, non-solid), and malignancy score from the
LUNA16 dataset and condition the GAN on these additional features [12] [13].
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A More Generated Samples and Nearest Reals

Figure 11: Generated (left) vs. closest real training sample (right).

Figure 12: Generated (left) vs. closest real training sample (right).

Figure 13: Generated (left) vs. closest real training sample (right).
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Figure 14: Generated (left) vs. closest real training sample (right).
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