Replication of Convexified Soft Landing Optimal Control
by Acikmese et al. and Blackmore et al.

Jefl Cui

To my friend Chao, reaching for the neutron stars.

December 20, 2018

1 Introduction

This final project extends Chao Ju’s final project last year [3], an implementation of
a reduced form of the convexified soft landing optimal control by Agikmese et al. [I] and
Blackmore et al. [2] Building on his project, here I implement the original paper.

The problem is to soft-land a chemically propelled vehicle, abstracted as a point
mass with a mass flow 7 dependent on the throttle, on a planetary surface with given
landing target coordinates q. The problem is to first minimize the landing error, and
then minimize fuel consumption, under nonconvex constraints that are convexified to
allow for convex optimization. [I] [2] further prove that the convexification is lossless in
terms of optimality.

1.1 Extending Chao’s Final Project

Chao’s final project implemented a reduced form of the problem. First, the mass flow
m, representing fuel consumption, is not considered. Second, nonconvex thrust constraints
p1 < ||Te(®)] < p2 (0 < p1 < p2 < Tinax), representing engine throttle constraints, are not
considered. In this final project, I build on Chao’s work and implement these constraints
in the original papers as well.

2 Problem Formulation by Acikmese et al. and Blackmore
et al.

The problem is formulated in [I] [2], explained below to show understanding.
2.1 Variables

The vehicle is treated as a point mass to avoid dealing with attitude dynamics.

x = [r(t),r(t)] is the state vector of the vehicle, where r(t) is the position.

m(t) is the mass of the vehicle.

0 is the maximum allowed angle between the thrust and the skyward direction.

v is the maximum glideslope constraint during flight.

w is the planet’s angular velocity. g is the gravitational acceleration.

p1 is the throttled thrust lower bound, ps the upper bound, and T« the maximum
thrust at full throttle; Te.(¢) is the thrust. 0 < p; < T.(t) < p2 < Thax-

a > 0 is the specific fuel consumption (kg/(N*s)).

ts is the total time of flight.

E = [8 (1) (1)] such that Er(t) is the ground track at time ¢.

1

2.2 Dynamics

We need to model the translational dynamics and the mass flow.

For the state vector @, we have

i(t) = Alw)e(0) + Blg + 1) (1)
0 I 0 -w w 0
A s —os) ST O el B H

A(w) models the state change due to Coriolis effects. Chao has given a very thorough
explanation in his final project [3], which I will refrain from belabouring the point. B
maps to the 7(¢) part in . Combined, they model the change in vehicle position and
velocity on a rotating planetary surface reference frame.

The mass flow is modeled proportional to the thrust, as

n(t) = —a|| T(t)| (3)

The dynamics are nonlinear due to mass flow and leads to nonconvex constraints. [I]
linearizes it by taking Inm and changing the variables accordingly. This will be described
later as well.

2.3 Nonconvex Formulation

2.3.1 Nonconvex Minimal Landing Error Problem

in || Er(ty) — 4
min|[Er(t) - ql (4)

(ts is the time of flight, F = [O 01

1
0 0] is the ground track matrix, ¢ € R? the landing
target.)

subject to: Vt € [0,¢] (the dynamics equations above), and

x(t) e X Vtel0,ty] (Flight envelope) (5)
0<p1 <||T(t)|| < p2, ATTe(t) > | T.(t)][cos® (Thrust constraints) (6)

(7o is the skyward unit vector [1 0 O]T.)

m(0) = mg, m(ty) >mo—my >0 (Initial mass; fuel constraint) (7)

(mo is the initial wet mass; my is the fuel mass. Fuel must not be depleted at termina-
tion.)
r(0) = 1r9,7(0) =79 (Initial state) (8)

nlr(t;) =0,7(t;) =0 (Terminal state: soft landing) (9)

In [I], the optimal final position on the ground is denoted d%,. (d%,; € R?) This is
used later in the minimum fuel problem.

2.3.2 Nonconvex Minimal Fuel Problem

With d}, above,

ty
min/ ol T(t)||dt (10)
tyTe Jo

subject to @ @ above, and:

|Er(ty) —q| < |/dp; —q| (Optimal landing error) (11)

Note that this constraint itself is convex already, but the other constraints are not. [I]
and [2] has convexified the landing error constraint: instead of constraining for an exact
position or an exact error, it is formulated such that the vehicle can land anywhere within
the optimal error radius, forming a closed disk. This does not alter optimality as all the
optimal solutions will still be on the boundary, but convexifies the constraint.

2.4 Convexification of Thrust Constraints

[1] and [2] convexified the thrust constraints by introducing a slack variable I'(¢) such
that p; < T'(t) < pa. This is a segment and, therefore, convex. Then, the convex thrust
upper bound [|T¢(t)|| < T'(t) is straightforward. Next, [I] comes up with a beautiful(!)
constraint, n’ T.(t) > cos® I'(t), convexifying the thrust pointing constraint and the
thrust lower bound.

2.4.1 Convex Relaxed Minimum Landing Error Problem

i [Er(ty) = dl (12)

subject to @, and:

m(t) = —al'(t) Vt € [0,tf] (Mass flow) (13)

ITo(t)]| < T(t), 0 < p1 <T(t) < pa, AT To(t) > cos® T(t) (Thrust) (14)

In [1], the optimal final position on the ground is denoted dps. (d; € R?) This is
used later in the convexified minimum fuel problem.

2.4.2 Convex Relaxed Minimum Fuel Problem

tﬁlilcl}l“r(t)dt (15)

subject to @D , and:

|Er(ty) —q| < |/dps —q| (Optimal landing error) (16)
2.5 Convexification of Nonlinear Mass Flow

As discussed above, the dynamics are nonlinear due to mass flow and leads to
nonconvex constraints. Agikmese et al. [I] linearizes it in Appendix A as follows:

T
o:=—,u:=—,z:=Inm. (17)
m m

2.5.1 Convex Relaxed Minimum Landing Error Problem, Changed Vari-
ables

min | Er(ty) — g (18)
subject to @, and:

x(t) = A(w)x(t) + B(g + u) Vt € [0,t4] (19)

2(t) = —ao(t) Vt € [0,ty] (20)

And changed variable mass (z) boundary conditions:

ty
zo = Inmg, zp =Inmy, 2(tf) = 29 +/ —ao(t)dt > In(mg —my) >0 (21)
0

And changed thrust (u,o) constraints:

lu®)| < o), pre W < o(t) < pee*D, ATu(t) > cosb o(t) (22)

Write ple_z(t) <o(t) < pge_z(t) as a second-order cone for optimization:

(2(t) — =0(t))”

pre”® |1 = (=(0) = 20(t)) + -2

< o(t) < pee” ™1 — (2(t) — 20(1))]

Where z(t) = In(mo — apat). [1]

The cone is centered around ¢t = 0. It is a good enough approximation for model
predictive control. At each frame, we treat the current frame as t = 0, optimize, and
only use the first (or the first few) control outputs; therefore, the error on the o will be
bounded and the constraints satisfied.

Here we denote the optimal final position on the ground dp-. (dps € R?) This is
used later in the minimum fuel problem.

2.5.2 Convex Relaxed Minimum Fuel Problem, Changed Variables

ty
min / o(t)dt (23)
0

ty,u,o

Subject to @ , and

1Er(ty) — gl < lldps —4qll (24)

3 Implementation

My implementation uses a straightforward discretization with dt = 1. Flight
parameters are provided by [I] for a simulated Mars soft landing. See

A model predictive controller is implemented. At each frame, the optimal control
and the current frame is solved and saved. Then, a new optimization is started on the
next frame predicted by the dynamics. For the optimizer code, see[5.2] It is also available
at https://jeffcui.com/assignments/cs164/final/optimizer.py.

3.1 Possible Extensions

The original paper by Blackmore et al. used a radial basis discretization [2]. This
was not implemented.

I also did not implement a line search of optimal flight time, detailed in [2]. How-
ever, I did replicate its experimental conclusion that the minimal fuel consumption is
monotonically dependent on flight time in 4.1

Additionally, the flight envelope X is only defined by the glideslope constraint in
my implementation. I have omitted speed constraints from my implementation.

https://jeffcui.com/assignments/cs164/final/optimizer.py

4 Results

The vehicle soft landed and remained in constraints. See Figure[ll Please watch the
animation at https://jeffcui.com/assignments/cs164/final/landing.mp4. Snap-
shots can be found in (.3

Thrust Angle from Vertical
Thrust Profile

17500 80 1

15000

60
12500

10000 —— Angle from Vertical

—=- Angle Constraints
40

7500 === Throttle Constraints
- T O S S |

2500

Figure 1: Thrust profile and angle from vertical.

4.1 Effect of Flight Time on Fuel Usage

Blackmore et al. discovered that experimentally, minimal fuel consumption is
monotonically dependent on flight time, justifying line search as a practical approach for
finding the optimal flight time. [2] Here, I replicate this experiment with ¢; € [45,59].
t = 45 is infeasible given the set of constraints and flight parameters. See Figure

Fuel Consumption v. Flight Time

300 1 X Infeasible
280 1
¥
i=3
2 260
o
£
=3
2
S
Y240 A
[}
=]
[T
220
46 48 50 52 54 56 58

Flight time (s)

Figure 2: Fuel v. Flight Time.

https://jeffcui.com/assignments/cs164/final/landing.mp4

References

[1] Behget Agikmese, John M Carson, and Lars Blackmore. Lossless convexification of
nonconvex control bound and pointing constraints of the soft landing optimal control
problem. IEEE Transactions on Control Systems Technology, 21(6):2104-2113, 2013.

[2] Lars Blackmore, Behcet Acikmese, and Daniel P Scharf. Minimum-landing-error
powered-descent guidance for mars landing using convex optimization. Journal of
guidance, control, and dynamics, 33(4):1161-1171, 2010.

[3] Chao Ju. Csl164 final project: Soft landing on mars, a 3d convex problem. CS16/
Final Project, 2017.

5 Appendix

5.1 Flight Parameters

Parameter Value Unit
g (-3.71,0,0)T m/s?
w 1075 x (2.53,0,6.62)" rad/s
o (2400, 450, —330, —10, —40,10)7 m, m, m, m/s, m/s, m/s
mg 2000 kg
my 300 kg
Tinax 24000 N

P1 0.2 Thax = 4800 N

02 0.8 Thax = 19200 N

0 90 deg
v 75 deg
N 47 S

5.2 Optimizer Code

Raw: https://jeffcui.com/assignments/cs164/final/optimizer.py

import cvxpy as cp

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from matplotlib import rc

rc(’text.latex’, preamble=r’\usepackage{sfmath}’)
rc(’text’, usetex=True)

https://jeffcui.com/assignments/cs164/final/optimizer.py

def formulate MLEP(x.0, m®, m_f, g, t, dt):

number of discrete steps
N = int(t / dt)

reparametrizations
z_® = np.log(m_0)
log_empty_mass = np.log(m_0 — m_£f)

precalculate e {—2_0} for constraints

eneg_z_ 0 = np.exp(—z_0)

precalculate mass under max thrust for constraints
NOTE: z0(t) is logarithmic mass w.r.t. time
under constant mazimum thrust
whereas z_0 is log of initial mass.
z0 = np.zeros((1l, N))
for i in range(N):
z0[0, i] = np.log(m_® — alpha % rho_2 x dt * i)

minimum landing error problem
= cp.Variable((6, N))

= cp.Variable((l, N))

= cp.Variable((3, N))
igma = cp.Variable((l, N))

n S N X)

MLEP _objective = cp.Minimize(cp.norm(Exx[:3, N-1] — q))
MLEP _constraints = [

z[0, 0] == z_0,

z[®, N-1] >= log_empty_mass,
x[:,0] == x_0,

e.1.T » x[:3,N-1] == O,

cp.norm(x[3:,N-1]) <= eps_final_velocity,

for i in range(N-1):
MLEP_constraints.append/(

x[:,i+1] == x[:,i] + (Axx[:,i] + Bx(g+ul:,i]))
)
MLEP_constraints.append(

z[:,i+1] == z[:,i] — alpha x sigmal[:,i]
)

MLEP_constraints += [

*

dt

def

cp.norm(u, axis=0) <= sigmal[0,:],
rho_1 x e_neg_z_0 x (
1 — (z[0,:] — z0[0,:]) + (z[0,:] — zO0[0,:])xx2/2
) <= sigmal[0,:],
rho_2 x e_neg_z_0 x (
1 — (z[0,:] — z0[0,:])
) >= sigmal®,:],

x[0,:] >= cp.norm(x[:3,:], axis=0) *x cos_glideslope,

n_hat % u >= cos_theta % sigmal[0,:],

]

return (
cp.Problem(MLEP_objective, MLEP_constraints),
X, z, U, sigma

)

formulate MFP(x_ 0, m 0, m_f, g, t, dt, optimal_pos):
N = int(t / dt)

reparametrizations
z_.® = np.log(m_0)
log_empty_mass = np.log(m_0 — m_f)

precalculate e {—2_0} for constraints
eneg_z 0 = np.exp(—z_0)

precalculate mass under max thrust for constraints
NOTE: z0(t) is logarithmic mass w.r.t. time
under constant mazximum thrust
whereas z_0 is log of initial mass.
z0 = np.zeros((1l, N))
for i in range(N):
zO[®, i] = np.log(m_® — alpha * rho_2 * dt * i)

precalculate the minimum landing error mnorm
optimal_pos_error = np.linalg.norm(optimal_pos — q)

minimum fuel problem

Xx = cp.Variable((6, N))
z = cp.Variable((1l, N))
u = cp.Variable((3, N))
sigma = cp.Variable((l, N))

MFP_objective = cp.Minimize(cp.sum(sigma) =* dt)

with the same constraints as MLEP abowve

MFP_constraints = [
z[®, 0] == z_0,
z[®, N-1] >= log_empty_mass,
x[:,0] == x_0,
e.1.T » x[:3,N-1] == O,

cp.norm(x[3:,N-1]) <= eps_final_velocity,

]

for i in range(N-1):
MFP_constraints.append/(

x[:,i+1] == x[:,i] + (Axx[:,i] + Bx(g+ul:,i])) = dt
)
MFP_constraints.append/(

z[:,i+1] == z[:,i] — alpha x sigmal:,i]
)

MFP_constraints += [
cp.norm(u, axis=0) <= sigmal0,:],

rho_1 x e_neg_z_0 x*x (
1 — (z[0,:] — z0[0,:1) + (z[0,:] — zO0[0,:])*x2/2
) <= sigmal[0,:],

rho 2 x e_.neg_.z 0 *x (
1 — (z[0,:] — z0[0,:])
) >= sigmal0®,:],

x[0,:] >= cp.norm(x[:3,:], axis=0) * cos_glideslope,

n_hat * u >= cos_theta x sigma[0,:],

]

and the landing error constraints
MFP_constraints.append(
cp.norm(Exx[:3, N-1] — q) <= optimal_pos_error

10

)

return (
cp.Problem(MFP_objective, MFP_constraints),
X, z, U, Ssigma

def solve(x 0, m®, m f, q, t, dt):
N = int(t / dt)

MLEP_problem, x, z, u, sigma = formulate_MLEP(
x0, m0, m.f, g, t, dt

)

MLEP_problem.solve ()

denoted d_{p_3}"x in the paper
the minimum error position
optimal_pos = x.value[l1l:3, N-1]

MFP_problem, x, z, u, sigma = formulate_MFP(
x0, m0O®, mf, g, t, dt, optimal_pos

)

MFP_problem.solve ()

return x, z, u, sigma, MLEP_problem, MFP_problem

——— PLANETARY CONSTANTS ——

rotation angular wvelocity

omega = np.array([2.53e-5, 0, 6.62e-5]).T
gravitational acceleration

g = np.array([-3.71, 0, 0]).T

—— INIT ——
angular wvelocity matriz
S = np.array ([

[0, —omegal[2], omegal[l]],
[omega[2], 0, -—omegal[0]],
[omega[1l], omegal[0], 0],

D

matriz A, fictitious force

11

A = np.block ([

[np.zeros((3, 3)), np.eye(3)],
—2xS],

L —Sxx%2,
D

matrix B, welocity getter

B = np.block([
[np.zeros((3, 3))1,
[np.eye(3)],

D

nit vectors

= np.array([1,0,0]).T
np.array([0,1,0]).T
np.array([0,0,1]1).T

m o o Jh

U
21
_2
_3

skyward
n_hat = e_1

matrix E, ground projection

E = np.array([

e 2.7,
e_3.T,
D
—— VEHICLE ——

max thrust

T_max = 24000

thrust upper bound
rho 2 = 0.8 x T_max

thrust lower bound
rho_1 = 0.2 x T_max

fuel consumption rate
alpha = 5e-4

initial mass

moO® = 2000
fuel mass
mf = 300

initial state
Xx_ 0 = np.array([2400, 450,

-330,

12

-10,

—40,

10]).T

—— OPTIMIZATION PARAMS ———
dt = 1

thrust envelope
theta = np.deg2rad(90)

glideslope envelope
glideslope = np.deg2rad(75)

precalculate cos values
cos_theta = np.cos(theta)
cos_glideslope = np.cos(glideslope)

eps_final_velocity = le-2

flight time
t = 47

landing target coordinates

q = np.array ([0, 0]1)
B OPTIMIZATION ———————

m_1 = np.nan
delta_m = np.nan

i: time elapsed since start of simulation

history = []

elapsed_time = np.linspace(®, t-2xdt,

for i in elapsed_time:

X, z, u, sigma, MLEP_problem, MFP_problem

x0®, mO0, mf, g, t — i, dt

)
history.append ({
"x’: x.value,
z’: z.value,
u’: u.value,
sigma’: sigma.value,

1)

proceed to mnext time point
x_.0 = x.value[:, 1]

13

int((t-1)/dt))

solve(

m_1 = np.exp(z.valuel[0®, 1])
deltam = m_1 — m_0

m.® += delta_m

m_f += delta_m

print (' ######44# t = %.2f #######4° % (i+1))
print(’r\t%.2f\t%.2f\t%.2f" % tuple(x_0[:3]1))
print(C’v\t%.2f\t%.2f\t%.2f" % tuple(x_0[3:]))
print(’a\t%.2f\t%.2f\t%.2f" % tuple(u.value[:,0]))
print('m\t%.2f’ % m_0Q)

print(’dm\t%.2f’ % delta_-m)

#H —— PLOTTING ——————
history_clean = {}
for key in history[0].keys():
history_clean[key] = []
for i in range(lenChistory)):
history_clean[key].appendChistory[i][key][:,0])
history_clean[key] = np.stack(history_clean[key])

trajectory = history_clean[’x’][:,:3]
velocity = history_clean[’x’]1[:,3:]
ZS, XS, ys = trajectory.T

m = np.expChistory_clean[’z’])

T_c = history_clean[’u’] * m

T_c_.norm = np.linalg.norm(T_c, axis=1)
T_c_angle_from_vertical = np.arccos(T_c[:,0] / T_c_norm)

T c.zs, T.c.xs, T_.c.ys = T_c.T
T_c_rearranged = np.array([
T_c_xs,
T_c_ys,
T_c_.zs,

D.T

thrust length per newton
T_c_plot_length_per_newton = 0.04
T_c_rearranged *= T_c_plot_length_per _newton

14

— PLOT TRAIL ———————

fig = plt.figure(dpi=300, figsize=(12, 4))
ax = fig.add_subplot (121, projection="3d’)
ax.set_aspect(’equal’)

ax.plot ([450-1200,450+1200],[0,0]1,[0,0], color="r’, alpha=0)
ax.plot([0,0],[—-330-1200,—-330+1200],[0,0], color='b’, alpha=0)
ax.plot([0,0],[0,0],[0,2400], color="g’, alpha=0)

ax.view_init(elev=15., azim=120)
ax.plot(xs, ys, zs)
for i in range(len(xs)):
ax.plot(
[xs[i], xs[ill],
lys[il, ys[ill,
[0, zs[i]],
linewidth=0.2,
color="0",
)
for i in range(len(xs)):
ax.plot(
[xs[i], xs[i] — T_c_rearranged[i][0]],
[ys[i], ys[i] — T_.c_rearranged[i][1]],
[zs[i], zs[i] — T_c_rearranged[i][2]],
linewidth=0.5,
color="r",
)

ax.scatter(xs, ys, np.zeros(len(xs)), s=1)

ax = fig.add_subplot (122, projection=’3d’)
ax.set_aspect(’equal’)

ax.plot ([450-1200,450+1200],[0,0],[0,0], color="'r’, alpha=0)
ax.plot([0,0],[—-330-1200,—-330+1200],[0,0], color='b’, alpha=0)
ax.plot([0,0],[0,0],[0,2400], color="g’, alpha=0)

ax.view_init(elev=15., azim=240)
ax.plot(xs, ys, zs)
for i in range(len(xs)):
ax.plot(
[xs[i], xs[il],
lys[il, ys[ill,
[0, zs[i]],

15

linewidth=0.2,

color="0",
)
for i in range(len(xs)):
ax.plot(
[xs[i], xs[i] — T_c_rearranged[i][0]],
[ys[i], ys[i] — T_c_rearranged[i][1]],
[zs[i], zs[i] — T_c_rearranged[i][2]],
linewidth=0.5,
color="r"’,
)
ax.scatter(xs, ys, np.zeros(len(xs)), s=1)
plt.show()
#H —— PLOT THRUST PROFILE ——————

plt.figure(figsize=(8,6), dpi=300)
plt.title(’Thrust Profile’)
plt.plot(elapsed_time, np.abs(T_c_zs),

color="r’, label=’z-—axis Component’)
plt.plot(elapsed_time, np.abs(T_c_xs),
color="g’, label='x—axis Component’)

plt.plot(elapsed_time, np.abs(T_c_ys),
color="b’, label="y—axis Component’)
plt.plot(elapsed_time, T_c_norm,
color="k’, label="Total Thrust’)

plt.axhline(rho_1, linestyle="—",
label="Throttle Constraints’)

plt.axhline(rho_2, linestyle="—-")

plt.legend ()

plt.show()

PlOT THRUST ANGLE FROM VERTICAL ———————

plt.figure(figsize=(8,6), dpi=300)

plt.title(’Thrust Angle from Vertical’)

plt.plot(elapsed_time, np.rad2deg(T_c_angle_from_vertical),
color="k’, label="Angle from Vertical’)

plt.axhline(np.rad2deg(theta),

linestyle="—", label="Angle Constraints’)
plt.axhline(®, linestyle="—-")
plt.legend ()
plt.show()

16

#H ————— PLOT ANIMATION ——————
trail fade out

TRAIL DISSIPATE _ALPHA = 0.5
TRAIL _THRESH = 0.05

for i in tgdm(range(len(xs))):

fig = plt.figure(dpi=300)
ax = fig.add_subplot(l111l, projection=’3d’)
ax.set_aspect(’equal’)

hack: fix aspect ratio

ax.plot ([450-1200,450+1200],[0,0],[0,0], color="r’, alpha=0)
ax.plot([0,0],[—-330-1200,—-330+1200],[0,0], color="b’, alpha=0)
ax.plot([0,0]1,[0,0],[0,2400], color="g’, alpha=0)

target

ax.plot ([-500,500],[0,0]1,[0,0], color="r’, alpha=0.2)
ax.plot([0,0],[-500,500]1,[0,0], color="r’, alpha=0.2)
ax.scatter(®, 0, 0, s=5, color="'r’, alpha=0.2)

ax.view_init(elev=15., azim=120)

trail
for j in range(i):
trail_alpha = TRAIL_DISSIPATE_ALPHA xx (i—j+1)
if trail_alpha < TRAIL_THRESH:
trail_alpha = TRAIL_THRESH
ax.plot(
[xs[j]l, xs[jl],
Lys[il, ys[ill,

[0, zs[jll,
linewidth=0.2,
color="h",
alpha=trail_alpha,
)
ax.plot(

[xs[j], xs[j] — T_c_.rearranged[j]1[0]],
[ys[jl, ys[j]l] — T_c_rearranged[j][1]],
[zs[j], zs[j]l] — T_c_.rearranged[j]1[2]],
linewidth=1,

17

color="r’,
alpha=trail_alpha,
)
ax.scatter(
xs[jl, ysl[il, O,
s=1,
color="h",
alpha=trail_alpha,
)
ax.scatter(
xs[jl, ysl[jl, zs[jl,
s=2,
color="orange’,
alpha=trail_alpha,
)

current state
ax.plot(
[xs[i], xs[il],
lys[il, ysl[ill,
[0, zs[i]],
linewidth=0.2,
color="b",
)
ax.plot(
[xs[i], xs[i] — T_c_rearranged[i][0]],
[ys[i], ys[i] — T_c_rearranged[i][1]],
[zs[i], zs[i] — T_c_rearranged[i][2]],
linewidth=1,
color="r"’,
)
ax.scatter(xs[i], ys[i], np.zeros(len(xs))[i], s=1, color=’'b’)
ax.scatter(xs[i], ys[i], zs[i], s=2, color='orange’)

plt.savefig(’./figs/%02d.png’ % i)
plt.close(fig)

18

5.3 Flight Trail Snapshots

F 2500
2000
" 1500
1000
[500

1500
15004 g9 0 50]0068
500 0 500 500

Figure 3: t=0

F 2500
S F 2000
" 1500
1000
[500

N

1500
15004 o0 0 5010068
500 0 500 500

Figure 4: t=10

19

2500
" 2000
" 1500
1000
[500

—18500
15004009 0 570]0068
500 | 500 500

Figure 5: t=20

2500
" 2000
- 1500
1000
" 500

—1500
1500109 0 50]0068
500 | 500 500

Figure 6: t=25

20

" 2500
" 2000
1500
1000
" 500

—1500
15001909 0 ‘%]0068
500 | 500 500

Figure 7: t=30

2500
2000
1500
1000
" 500

—1500
1500499 0 5010068
500 | 500 500

Figure 8: t=35

21

—

2500
[2000
[1500
[1000
[500
0

[—500

1500
15001909 0 5&0066
500 0 500 500

Figure 9: t=40

F 2500
" 2000
1500
1000
- 500
0

500

1500
15001090 0 5_010068
500 0 500 500

Figure 10: End state

22

	Introduction
	Extending Chao's Final Project

	Problem Formulation by Açıkmese et al. and Blackmore et al.
	Variables
	Dynamics
	Nonconvex Formulation
	Nonconvex Minimal Landing Error Problem
	Nonconvex Minimal Fuel Problem

	Convexification of Thrust Constraints
	Convex Relaxed Minimum Landing Error Problem
	Convex Relaxed Minimum Fuel Problem

	Convexification of Nonlinear Mass Flow
	Convex Relaxed Minimum Landing Error Problem, Changed Variables
	Convex Relaxed Minimum Fuel Problem, Changed Variables

	Implementation
	Possible Extensions

	Results
	Effect of Flight Time on Fuel Usage

	Appendix
	Flight Parameters
	Optimizer Code
	Flight Trail Snapshots

